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Monte Carlo dynamics in global optimization

C. N. Chen,1 C. I. Chou,2 C. R. Hwang,3 J. Kang,1 T. K. Lee,1 and S. P. Li1
1Institute of Physics, Academia Sinica, Taipei, Taiwan
2Computing Center, Academia Sinica, Taipei, Taiwan

3Institute of Mathematics, Academia Sinica, Taipei, Taiwan
~Received 26 January 1999!

Several very different optimization problems are studied by using the fixed-temperature Monte Carlo dy-
namics and found to share many common features. The most surprising result is that the cost function of these
optimization problems itself is a very good stochastic variable to describe the complicated Monte Carlo
processes. A multidimensional problem can therefore be mapped into a one-dimensional diffusion problem.
This problem is either solved by direct numerical simulation or by using the Fokker-Planck equations. Above
certain temperatures, the first passage time distribution functions of the original Monte Carlo processes are
reproduced. At low temperatures, the first passage time has a path dependence and the single-stochastic-
variable description is no longer valid. This analysis also provides a simple method to characterize the energy
landscapes.@S1063-651X~99!06808-7#

PACS number~s!: 02.60.Pn, 05.10.2a, 87.15.2v
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Over the past several decades there have been dram
increases in the number of global optimization problem
The problems arise in many diverse areas, such as scie
engineering, and business@1#. The major difficulty with this
kind of problem is the exponential increase of search sp
with system size. Hence most of the research effort has b
devoted to inventing algorithms to speed up the search
cess. A number of generic methods, such as the simul
annealing~SA! @2#, genetic algorithm~GA! @3#, and neural
network@4# have been used widely to study all sorts of g
bal optimization problems. Based on these generic meth
specific algorithms are developed for particular problem
These methods are usually evaluated only in terms of t
efficiency against other methods and there are no more q
titative and objective analyses employed to understand s
methods.

The difficulty in quantitatively analyzing the optimizatio
processes is due to the large number of variables invo
and the lack of physical guidance to replace these varia
by a few quantities, in analogy to the order parameters u
in describing the phase transitions of real materials with
infinite number of degrees of freedom. In the protein foldi
problem ~PFP!, Socci et al. @5# have proposed two orde
parameters. Knowledge of the optimal state is essentia
calculating the order parameters. Hence this is unlikely to
useful for general optimization problems where the optim
state is unknown in most cases. On the other hand, we m
continue to look for a general way to characterize the o
mization process with a few variables if we intend to ha
any semiquantitative understanding. We will show bel
that the cost function or the energy is a very natural stoch
tic variable to use. For most cases there is no need to in
duce other variables. Using the energy as a basic phys
quantity has an additional advantage where it provide
means to quantitatively characterize the ‘‘energy lan
scapes’’ of the problem that one is studying.

In this paper, we use fixed-temperature Monte Ca
~MC! dynamics to study four very different optimizatio
problems: the traveling salesman problem~TSP! @6#, the lat-
tice version of the protein folding problem~PFP! @7#, x-ray
PRE 601063-651X/99/60~2!/2388~6!/$15.00
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data analysis~XDA !, and a multivariable function. XDA will
be defined more clearly below. Both TSP and PFP invo
discrete operations, while XDA and the multivariable fun
tion have continuous variables. Despite the very differ
nature of each problem, they share many common featu
There exists a temperatureTop in each of the above cases
which the average time required to reach the global m
mum is the shortest. At temperatures greater thanTop, first
passage time distribution functions~FPTDF! are all reason-
ably well fitted by inverse Gaussian distribution function
This result suggests that an optimization process may
viewed as a biased diffusion in the one-dimensional spac
the energy. This is explicitly demonstrated by a simulation
a one-dimensional diffusion. We also show that for ca
with continuous variables we could use the Fokker-Plan
~FP! equation@8# to reproduce FPTDF. The drift velocity
and diffusion constant used in the FP equation or the o
dimensional simulation provide a nice way to character
the energy landscape in an optimization process.

In the following, the function to be optimized in the MC
process, namely, the cost function, will be denoted as
energyE. Just like SA@2#, we will introduce an effective
temperatureT ~T is in the same unit asE! and use the Boltz-
mann factor exp(2E/T) and the Metropolis algorithm@9# to
determine the transition probability. Notice thatT is not a
real temperature, its use is to parametrize the transition p
ability. In algorithms without using the Boltzmann factor it
possible to find a similar parameter. Our MC process is si
lar to the Glauber dynamics@10# used to study Ising model

For the protein-folding lattice model it is known@7# that
in the MC dynamics the temperature dependence of the
erage first passage time to reach the global minimumEmin is
a U-shape curve. This is also true for other optimizati
problems as shown in Fig. 1. In this figure the average M
steps required to reachEmin is plotted as a function of the
temperature, Fig. 1~a! is for TSP of 24 cities@11#, Fig. 1~b! is
for XDA of 32 atoms and Fig. 1~c! is for an analytical func-
tion @Eq. ~2!# with 20 variables. In obtaining the curves, w
have taken the following strategy. In the case of the P
2388 © 1999 The American Physical Society
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PRE 60 2389MONTE CARLO DYNAMICS IN GLOBAL OPTIMIZATION
since it is a discrete problem, we continue our simulat
until it finds the global minimum. In the case of the XD
and Eq.~2!, since they are problems in continuous spac
the probability that the system is exactly at the global op
mum is zero unless the temperature is zero. Therefore
require instead the time to reach the global optimum to
the time that the system reaches a certain energyEmin which
is low enough so that the system is already in the well t
contains the global minimum. Since the system is alre
deep inside the well that contains the global minimum,
Gaussian fluctuation will eventually bring it down to the gl
bal minimum. If one uses a differentEmin , one would in this
case alter the average MC steps to reach that energy bu
U-shape curve is still maintained.

Many examples of the TSP are tabulated in the TSP
brary @11#. We have worked on several of them and obtain
similar results. Here we shall only discuss our result for g
@11#. The cost function is the round trip distance travel
through these 24 cities. In each MC step we randomly se
two out of the 24 cities and evaluate its possibility of inte
changing paths irrespective of whether the move is acce
or not. At each temperature about several million samp
are used to calculate the average MC steps required to r
Emin .

The purpose of the XDA is to find the best possible cr
tal structure that fits the x-ray diffraction data@12#. The cost
function is

FIG. 1. Temperature dependence of the average MC step
quired to reach a global minimum for~a! TSP,~b! XDA, and ~c! Eq.
~2!.
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EXDA~$r j%,l!5(
k

@luF~k!u2uF~k!obsu#2, ~1!

wherer j is the coordinate of the atomj, k is the Miller index
of a reflection,F(k) is the structure factor calculated from
the atomic scattering factor f j (k) by F(k)
5( j f j (k) exp(2pik•r j ), F(k)obs is the square root of the
intensity observed or measured, andl is the scale factor
betweenF(k) and F(k)obs. The result in Fig. 1 is for the
case of a hypothetical crystal with 32 carbon atoms in
cubic cell. The optimization process is carried out by movi
the atoms around untilEXDA50. Here the MC step repre
sents the attempt to move all 32 atoms. Usually only a f
atoms will move in each sweep.

For the PFP, following Socciet al. @7# we only consider
the HP model on a 33333 cubic lattice. The amino acid is
either hydrophobic~H! or polar~P!. A protein with 27 mono-
mers of either H or P type is folded into a compact form
the cubic lattice by choosing one of three operations suc
sively. The energy is determined by the number of HH a
PP nearest-neighbor pairs. There is no energy for HP p
We obtain the same results as Ref.@7#, hence it is not shown
in Fig. 1. For our discussion below, we will use the 00
sequence from their paper.

TSP and the lattice version of PFP only involve discre
operations in each MC step and they belong to the clas
combinatorial optimization problems. Usually they are co
sidered to be different from problems with continuous va
ables such as the XDA. To make a more careful compari
we also studied another function with continuous variabl
The function is of the form

Ef n5S (
i 51

N

xi
2D 1/2

112)
i 51

N

cos~2pxi !. ~2!

We choose the number of variablesN to be 20. The energy
has the form of a multidimensional cone as represented
the first term added with an oscillatory function given by t
last term. It roughly mimics a funnel energy surface w
local minima and barriers.

Besides the four examples discussed above, the re
shown in Fig. 1 are also known in many other optimizati
problems. It is straightforward to come up with a qualitati
reason for the U-shape and its generality. At high tempe
tures there are too many paths available and it would t
quite a long time to locate the paths that would reach
global minimum. The situation improves as temperature
creases. However, as temperature decreases further, th
tential barriers and energy traps make the system difficul
move out of the local minima. Hence there is a temperatu
Top, at which the two factors balance each other and
system approaches the global minimum with the shor
time. If the above reasoning is correct, then aboveTop the
system behaves more ergodic and less path-dependent
analysis below using the FP equation reconfirms this und
standing.

The common behavior of the average first passage tim
reach the global minimumEmin as a function of temperatur
suggests taking a more careful examination of thefirst pas-
sage time distribution function~FPTDF! itself rather than

re-
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just the average time, which is the first moment of the d
tribution. A more careful consideration also questions
suitability of usingEmin as the final state in the first passa
time measurement. In the MC dynamics at a fixed tempe
ture, the system tends not to go to the global minimum
most likely to stay in states with the equilibrium energyEeq

determined by the particular temperature. As the system
laxes toward its equilibrium energyEeq, it would then fluc-
tuate around this equilibrium value. The Gaussian-like
ergy fluctuation would bring the system fromEeq to Emin as
long as there are no insurmountable barriers in between
this paper our FPTDF is always measured by reaching
Eeq at the specific temperature. How this is changed wh
Emin is used as the final state will be discussed later.

In Fig. 2, FPTDF are plotted for the four problems d
cussed above: TSP-24, PFP, XDA, and Eq.~2!. The distri-
bution functions are normalized. All four curves can be fitt
quite well by the inverse Gaussian distribution function@13#
~IGDF!, although it is less spectacular for the two combin
torial optimization problems, TSP and PFP@14,15#.

Similar to the Gaussian distribution function, the IGDF
also a solution of the one-dimensional diffusion equat
with a constant drift velocity. However, the Gaussian dis
bution function gives the probability density at timet for a
diffusive particle with a net drift velocity to be at a distan
d from the starting point. On the other hand, IGDF gives
probability density of the first passage time of the particle
arrive at distanced and it takes the form

FIG. 2. The first passage time distribution function to rea
equilibrium for four optimization problems. In~a! the circles are for
TSP-24 atT525 and squares for PFP atT51.8; ~b! the circles are
for XDA at T5300, and squares forEf n of Eq. ~2! at T50.03.
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f ~ t !5S l

2pt3D 1/2

expS 2
l~ t2m!2

2tm2 D , ~3!

wherem5d/v andl5d2/s2. v is the drift velocity andD
5s2/2 is the diffusion constant.

The success of fitting the FPTDF by the IGDF is qu
surprising since the original MC process involves many va
ables while IGDF describes a diffusion motion in one dime
sion. The result strongly suggests the possibility of using o
variable to understand these MC processes. The cost func
or energy therefore appears to be the natural variable
choice.

Once one decides to have the energy as the only stoc
tic variable, the original multivariable MC processes cou
be mapped into a one-dimensional diffusion equation in
energy space. A well known approximate approach to
scribe the diffusion process is the FP equation. Hence
shall consider the FP equation first. However, it seems to
unsuitable for combinatorial optimization problems, and
direct MC simulation of one-dimensional diffusion work
better.

In the MC process, the system starts from a largeE and
diffuses toward lower energy states. At a certain energyE,
the transition to the stateE1nE in the next step is deter
mined by the transition probabilityWE(nE). This transition
probability is measured during our MC simulation directl
According to the standard derivation of the FP equation@8#,
the first and second moments of the transition probabi
WE(nE) determine the drift velocity and diffusion coeffi
cient A(E) andB(E), respectively. The FP equation for th
probability densityP(E,t) is then given by

]P~E,t !

]t
52

]

]E S A~E!2
1

2

]

]E
B~E! D P~E,t !. ~4!

A(E) andB(E) are plotted as a function ofE for TSP-24
@17# at T525 in Figs. 3~a! and 3~b!, respectively, and forEf n
of Eq. ~2! in Figs. 3~c! and 3~d!. ClearlyA(E) andB(E) are
very different for TSP andEf n . The result of XDA is similar
to Ef n while that of PFP is similar to TSP. We should als
mention here that the equilibrium value of the TSP here
about 1390, while that of Eq.~2! is about 0.42 forT
50.031 and 0.336 forT50.025, respectively.

In Fig. 3~a!, A(E) is approximately a straight line an
crosses zero at the equilibrium energy. If we approxim
A(E)52g(E2Eeq) and assumeB(E)5s2 to be indepen-
dent of E, then the FP equation describes the famo
Ornstein-Uhlenbeck process@8# and it can be solved analyti
cally. Starting fromE0, the FPTDF to reachEeq is of the
form

f ~ t !52
yd

sp1/2S g

12y2D 3/2

expS 2
gy2d2

s2~12y2! D , ~5!

where y5exp(2gt) and d5E02Eeq. For very small and
very larget this equation and the inverse Gaussian distrib
tion function of Eq.~3! are very similar. However, we ca
also solve the FP equation numerically without making
approximations toA(E) andB(E). The numerical result for
the FPTDF is plotted in Fig. 4~a!. The circles are the result o
Monte Carlo simulation for the original TSP-24 problems
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FIG. 3. FunctionsA(E) andB(E) of Eq. ~4! as a function ofE ~a! and~b! for TSP-24 atT525; and~c! and~d! for Ef n at T50.025 and
T50.031.
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In Figs. 3~c!, and 3~d!, the drift velocity A(E) is fairly
small and with little variation until it reaches aboutE51.5.
The temperature dependence indicates that there are two
riers aroundE50.8 andE51.5 at T50.025. Similar sce-
nario also appears atT50.031. FPTDF obtained by integra
ing FP equation numerically is plotted as the solid line
Fig. 4~b!. It agrees very well with the original simulatio
result shown as the circles. The fact that there are barr
and local wells in these optimization problems is expect
Take, for example, the multivariable function@Eq. ~2!# that
we are studying. Let us take the number of variableN to be
1 instead of 20. It is a quadratic function plus a cosine fu
tion. With the cosine function alone, it is easy to see t
there are local wells whenx is equal top,3p, etc. One can
thus expect that the functionEf n has local wells and barrier
as the energy decreases in this case. As one increase
number of variables, there should be more local wells a
barriers but the phase space that one can wander around
increases. It is therefore conceivable that most of the barr
and wells at higher energies would have fewer effects
cause there are more paths for one to go down the hill. As
energy gets lower, effects of large local barriers and w
will begin to contribute. This is indicated in Figs. 3~c! and
3~d!. In the case of the TSP, the smoothness of the funct
A(E) andB(E) suggests that the local barriers and wells
still relatively small as compared to the energy scale that
ar-
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can hop in the energy range plotted in Figs. 3~a! and 3~b!.
Notice that the TSP result shown in Fig. 4~a! does not

agree so well with the FP result as forEf n . Indeed, the
numerical data for this figure are the case where we h
truncated the steps where they involve long jumps, i.e., la
DE. The data for this figure involveDE always less than
100. We have tried several other truncations and the fit g
worse as the allowedDE gets larger. We believe that this i
mainly due to the discrete nature of the MC operation
TSP. In the TSP MC process, there is a possibility for ve
large change in energy due to a single exchange of two ci
Hence the transition probabilityWE(nE) has very long tails
with small weight, which is similar to the famous Levy fligh
@8#. The second momentB(E) used in the FP approach can
not fully account for this behavior. It is worth mentionin
here that as one truncates the largeDE, one makes these
discrete models closer to the continuous models, as s
ported by our study of the sets of data with various trun
tions. Since combinatorial optimization problems usually
volve large change of energy, the FP approach is there
not appropriate.

Since we know the transition probabilityWE(nE) at all
the energyE, it is then not necessary to use the FP equat
which only uses the first and second moments of the tra
tion probability. We could calculate FPTDF by just doing
one-dimensional MC simulation. In Fig. 5, FPTDF obtain
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by using the transition probabilityWE(nE) ~solid line! in a
one-dimensional MC simulation is compared with the ori
nal FPTDF obtained for TSP-24. Excellent agreement s
ports the idea of using energy as the only stochastic varia

Another consequence of the success of the simple o
dimensional model is the realization that atT.Top, the in-
formation about the particular path is unimportant and
statistical information about all the paths represented
WE(nE) is enough. This is usually referred to as the ergo
property in statistical physics. It is surprising to see that
ergodic assumption actually works.

SinceEeq is the most likely state that the system will sta
at the corresponding temperature, the system is more li
to go up to the equilibrium state than to go down to low
energy states when it is at energyE,Eeq. Hence atE
,Eeq the drift velocity or A(E) is positive. This is very
different from the case withE.Eeq. Thus at finite tempera
tures the FPTDF to reach the global minimumEmin does not
have the form of IGDF and it has more paths with long
first passage time.

At temperatures belowTop, Eeq is very low. Before the
system reachesEeq, its drift velocity either vanishes or be
comes positive as shown in Fig. 3~c!. We do not expect the
approach to remain valid here. At very low temperatur

FIG. 4. FPTDF obtained by solving FP@Eq. ~4!# with the input
of Fig. 3. In ~a! the original MC result for TSP-24 is shown b
circles and solid lines are FP results;~b! is for Ef n at T50.031.
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different paths will have very different time scales involve
The system behaves nonergodic in the time scale of
simulation. The statistical information stored inWE(nE) is
thus not so useful. The functionsA(E) andB(E) for XDA
are very similar in nature to those of Eq.~2! as shown in
Figs. 3~c! and 3~d!, where one can see large barriers as
system goes to lower energy while those of the PFP
similar to the ones corresponding to the TSP in Fig. 3~a! and
3~b!. The nonergodic nature can also be reflected in the p
of FPTDF for the cases studied here where the curves co
sponding to those in Fig. 2 cannot be fitted by IGDF an
more, though they are not shown here. They all have lo
time tails, which is related to the fact that the system
trapped in local minima as the system searches for its glo
minimum.

Figure 3~b! shows that the effective diffusion coefficien
B(E) becomes very small at low energy. Vanishing dr
velocity and small diffusion coefficient imply that the syste
is confined to move in a relatively small region. Unless t
path to global minimum is within this region, it would b
very difficult for the system to locate it and this essentia
becomes a trapped state.

We notice that Figs. 3~a! and 3~b! demonstrate a typica
funnel energy surface@16#. The drift velocity A(E) de-
creases as energy is lowered and similarly the diffusion
efficient B(E) or the size of the neighborhood also shrink

In summary, we have shown that four different optimiz
tion problems have many common features in the way t
approach their equilibrium states. The average first pass
time to reach the global minimum at a fixed temperatu
Monte Carlo process has a minimum at a certain tempera
Top. At T.Top, FPTDF are approximated well by the IGD
defined by Eq.~3!. This suggests that we could use the co
function or the energy as the stochastic variable in describ
these complicated MC processes. With the energy as
only stochastic variable, we further show that FPTDF co
be derived more systematically by solving the FP equati
This approach works well for the optimization problems i
volving continuous variables. On the other hand, for com
natorial optimization problems, we need to use all the inf
mation contained in the transition probabilityWE(nE).

FIG. 5. FPTDF obtained from the one-dimensional diffusion
the energy space~the solid line! and the original multivariable MC
result ~circles! for TSP-24 atT525.
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Nevertheless, the original multivariable MC processes in
ther case are mapped into a one-dimensional diffusion p
lem.

This result also indicates that at temperatures aboveTop
the MC processes are dominated by entropy and the sy
is more or less ergodic. BelowTop, there are traps and ba
riers that not only slow down the search for the global mi
mum but also make the system behave in a nonergodic
in the time scale of the simulation. Since atTop we need the
smallest number of MC steps to find the global equilibriu
it is very advantageous for the optimization algorithm
,
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quickly locate this temperature. The failure of treating t
multivariable MC processes as a one-dimensional diffus
problem near or belowTop might be useful information for
this purpose.
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