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Several very different optimization problems are studied by using the fixed-temperature Monte Carlo dy-
namics and found to share many common features. The most surprising result is that the cost function of these
optimization problems itself is a very good stochastic variable to describe the complicated Monte Carlo
processes. A multidimensional problem can therefore be mapped into a one-dimensional diffusion problem.
This problem is either solved by direct numerical simulation or by using the Fokker-Planck equations. Above
certain temperatures, the first passage time distribution functions of the original Monte Carlo processes are
reproduced. At low temperatures, the first passage time has a path dependence and the single-stochastic-
variable description is no longer valid. This analysis also provides a simple method to characterize the energy
landscaped.S1063-651X99)06808-1
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Over the past several decades there have been dramatiata analysi$XDA ), and a multivariable function. XDA will
increases in the number of global optimization problemspe defined more clearly below. Both TSP and PFP involve
The problems arise in many diverse areas, such as sciencefscrete operations, while XDA and the multivariable func-
engineering, and businefk]. The major difficulty with this  tion have continuous variables. Despite the very different
kind of problem is the exponential increase of search spacgaire of each problem, they share many common features.

with system size. _Hence most of the research effort has beef'nere exists a temperatulig, in each of the above cases at
devoted to inventing algorithms to speed up the search pr nhich the average time required to reach the global mini-

cess. A number of generic methods, such as the simulate : .
. . . ! um is the shortest. At temperatures greater thgy first
annealing(SA) [2], genetic algorithm(GA) [3], and neural passage time distribution functiofBPTDH are all reason-

network[4] have been used widely to study all sorts of glo- . . . AP .
bal optimization problems. Based on these generic method bly well fitted by inverse Gaussian distribution functions.

specific algorithms are developed for particular problems) S résult suggests that an optimization process may be
These methods are usually evaluated only in terms of thei¥i€Wed as a biased diffusion in the one-dimensional space of
efficiency against other methods and there are no more quaf1e €nergy. This is explicitly demonstrated by a simulation of
titative and objective analyses employed to understand such one-dimensional diffusion. We also show that for cases
methods. with continuous variables we could use the Fokker-Planck

The difficulty in quantitatively analyzing the optimization (FP) equation[8] to reproduce FPTDF. The drift velocity
processes is due to the large number of variables involvednd diffusion constant used in the FP equation or the one-
and the lack of physical guidance to replace these variabledimensional simulation provide a nice way to characterize
by a few quantities, in analogy to the order parameters usethe energy landscape in an optimization process.
in describing the phase transitions of real materials with an In the following, the function to be optimized in the MC
infinite number of degrees of freedom. In the protein foldingprocess, namely, the cost function, will be denoted as the
problem (PFP, Socciet al. [5] have proposed two order energyE. Just like SA[2], we will introduce an effective
parameters. Knowledge of the optimal state is essential itemperaturél (T is in the same unit aE) and use the Boltz-
calculating the order parameters. Hence this is unlikely to benann factor exp{ E/T) and the Metropolis algorithrf9] to
useful for general optimization problems where the optimaldetermine the transition probability. Notice thatis not a
state is unknown in most cases. On the other hand, we mugtal temperature, its use is to parametrize the transition prob-
continue to look for a general way to characterize the opti-ability. In algorithms without using the Boltzmann factor it is
mization process with a few variables if we intend to havepossible to find a similar parameter. Our MC process is simi-
any semiguantitative understanding. We will show belowlar to the Glauber dynamid4.0] used to study Ising model.
that the cost function or the energy is a very natural stochas- For the protein-folding lattice model it is knowi7] that
tic variable to use. For most cases there is no need to intrdn the MC dynamics the temperature dependence of the av-
duce other variables. Using the energy as a basic physicarage first passage time to reach the global mininiiyp is
guantity has an additional advantage where it provides a U-shape curve. This is also true for other optimization
means to quantitatively characterize the “energy landJroblems as shown in Fig. 1. In this figure the average MC
scapes” of the problem that one is studying. steps required to readg,,, is plotted as a function of the

In this paper, we use fixed-temperature Monte Carlotemperature, Fig.(d) is for TSP of 24 citie$11], Fig. 1(b) is
(MC) dynamics to study four very different optimization for XDA of 32 atoms and Fig. () is for an analytical func-
problems: the traveling salesman probl€RsP [6], the lat-  tion [Eqg. (2)] with 20 variables. In obtaining the curves, we
tice version of the protein folding proble(®FP [7], x-ray  have taken the following strategy. In the case of the PFP,
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<T3x105] wherer; is the coordinate of the atojnk is the Miller index
2x10°1 of a reflectipn,F(k) is the structure factor calculated from
10" | the  atomic 'scattermg faptor fi(k) by F(k)
_=2jfj.(k) exp(2mik-r;), F(K)ops is the square root of the
0 ‘ ‘ intensity observed or measured, andis the scale factor
12 14 16 18 20 2 A betweenF (k) and F(k)q,s. The result in Fig. 1 is for the
1200 1 0 case of a hypothetical crystal with 32 carbon atoms in a
1000 | cubic cell. The optimization process is carried out by moving
> the atoms around untiEyp,=0. Here the MC step repre-
800 | sents the attempt to move all 32 atoms. Usually only a few
600 | atoms will move in each sweep.

For the PFP, following Socat al. [7] we only consider
400 | the HP model on a 8 3X 3 cubic lattice. The amino acid is
either hydrophobi¢H) or polar(P). A protein with 27 mono-
mers of either H or P type is folded into a compact form on

220 240 260 280 300 320 340 360

1500 4 the cubic lattice by choosing one of three operations succes-
1200 | © sively. The energy is determined by the number of HH and
<> PP neargst-neighbor pairs. There is no energy for HP pairs.
900 - We obtain the same results as Réfl, hence it is not shown
in Fig. 1. For our discussion below, we will use the 002
600 sequence from their paper.
300 | TSP and the lattice version of PFP only involve discrete
; : : : : : operations in each MC step and they belong to the class of
0.022 0.024 0.026 0.028 0.030 0.032 0.034 0.036 combinatorial optimization problems. Usually they are con-
T sidered to be different from problems with continuous vari-

ables such as the XDA. To make a more careful comparison
FIG. 1. Temperature dependence of the average MC steps re-e also studied another function with continuous variables
quired to reach a global minimum f@a) TSP,(b) XDA, and(c) Eq. w udi unction wi Inuous vari )

Q). The function is of the form

N 112 N
since it is a discrete problem, we continue our simulation Efn:(E xiz +1_H cog27X;). 2
until it finds the global minimum. In the case of the XDA =1 i=1

and Eq.(2), since they are problems in continuous spaces, .

the probability that the system is exactly at the global opti-V& choose the number of variablisisto be 20. The energy
mum is zero unless the temperature is zero. Therefore, WS the form of a multidimensional cone as represented by
require instead the time to reach the global optimum to b he first term added WItI’_] an oscillatory function given by the
the time that the system reaches a certain enErgywhich ast term. It roughly mimics a funnel energy surface with
is low enough so that the system is already in the well thalOCaI minima and barriers. .

contains the global minimum. Since the system is alread Besu_nles _the four examples d_|scussed above, _th? re_sults
deep inside the well that contains the global minimum, thep?(;)g\llg nlg ﬁ;%él'st?;;iegﬁ!cigrvtg(r)c\ilv{:) '2 orr?wina/po\mter: grggg:ﬁ:geg
Gaussian fluctuation will eventually bring it down to the glo- '

o ) T reason for the U-shape and its generality. At high tempera-
bal minimum. If one uses a differefy;,, one would in this e there are too many paths available and it would take

case alter the average MC steps to reach that energy but tgite a long time to locate the paths that would reach the
U-shape curve is still maintained. _ _global minimum. The situation improves as temperature de-
Many examples of the TSP are tabulated in the TSP livreases. However, as temperature decreases further, the po-
brary[11]. We have worked on several of them and obtainedential barriers and energy traps make the system difficult to
similar results. Here we shall only discuss our result for gr24move out of the local minima. Hence there is a temperature,
[11]. The cost function is the round trip distance traveledTop, at which the two factors balance each other and the
through these 24 cities. In each MC step we randomly seleatystem approaches the global minimum with the shortest
two out of the 24 cities and evaluate its possibility of inter-time. If the above reasoning is correct, then abdyg the
changing paths irrespective of whether the move is acceptesi/stem behaves more ergodic and less path-dependent. Our
or not. At each temperature about several million samplesnalysis below using the FP equation reconfirms this under-
are used to calculate the average MC steps required to reastanding.
Emin - The common behavior of the average first passage time to
The purpose of the XDA is to find the best possible crys-reach the global minimurk,,;, as a function of temperature
tal structure that fits the x-ray diffraction ddtb2]. The cost suggests taking a more careful examination of fthet pas-
function is sage time distribution functiotFPTDB itself rather than
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whereu=d/v and\=d?/ ¢?. v is the drift velocity andD
=¢?/2 is the diffusion constant.
- 0.0002 The success of fitting the FPTDF by the IGDF is quite
surprising since the original MC process involves many vari-
ables while IGDF describes a diffusion motion in one dimen-
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First Passage Time Distribution Function
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0.0002 - sion. The result strongly suggests the possibility of using one
variable to understand these MC processes. The cost function
0.0000 - sz 0.0000 or energy therefore appears to be the natural variable of
0 2000 4000 6000 8000 10000 12000 choice.
MC Time Once one decides to have the energy as the only stochas-
tic variable, the original multivariable MC processes could
0.0025 0.0018 . . : e o
g b ] be mapped into a one-dimensional diffusion equation in the
£ 0.0020 | ) o e s | 0.0015 energy space. A well known approximate approach to de-
i O T ian scribe the diffusion process is the FP equation. Hence we
5 0.0015 | - 0.0012 shall consider the FP equation first. However, it seems to be
g unsuitable for combinatorial optimization problems, and a
2 L 0.0009 . ; : : : e
° direct MC simulation of one-dimensional diffusion works
& 0.0010 -
E L 0.0006 better.
g 0.0005 | 1§ In the MC process, the system starts from a laggand
é ' p - 0.0003 diffuses toward lower energy states. At a certain endggy
& 17 - the transition to the state+ AE in the next step is deter-
0.0000 el . : e =4 0.0000 ) o - : "
0 500 1000 1500 2000 mined by the transition probabilitWg(AE). This transition
MC Time probability is measured during our MC simulation directly.

_ ) o ) According to the standard derivation of the FP equaf®in
FIG. 2. The first passage time distribution function to reachthe first and second moments of the transition probability
equilibrium for four optimization problems. If@) the circles are for We(AE) determine the drift velocity and diffusion coeffi-

fT?F)’(—éiaftr;_zgggd i%uares rfor :ZEP mf:é'&(g;) tlthe_i:i(r)cge; ar®  cientA(E) andB(E), respectively. The FP equation for the
° at T=o0%, and squares fdre, OF £q. (£) at T=10.Us. probability densityP(E,t) is then given by

just the average time, which is the first moment of the dis- JP(Et) 4

tribution. A more careful consideration also questions the o~ e\ AB) Tz EBE)PED. 4
suitability of usingE,;, as the final state in the first passage

time measurement. In the MC dynamics at a fixed tempera- A(E) andB(E) are plotted as a function & for TSP-24
ture, the system tends not to go to the global minimum but17] atT=25 in Figs. 3a) and 3b), respectively, and foE,
most likely to stay in states with the equilibrium enefgy, ~ ©f Ed.(2) in Figs. 3¢) and 3d). ClearlyA(E) andB(E) are
determined by the particular temperature. As the system retery different for TSP ané,, . The result of XDA is similar
laxes toward its equilibrium energd¥e,, it would then fluc- to En while that of PFP is similar to TSP. We should also
tuate around this equilibrium value. The Gaussian-like enMention here that the equilibrium value of the TSP here is

ergy fluctuation would bring the system fro, to E, as about 1390, while that of Eq(2) is about 0.42 forT

; f =0.031 and 0.336 fol =0.025, respectively.
long as there are no insurmountable barriers in between. In ; - . . .
9 In Fig. 3@, A(E) is approximately a straight line and

this paper our FPTDF is always measured by reaching the AL ;
- o crosses zero at the equilibrium energy. If we approximate
Eeq at the specific temperature. How this is changed whe%(E): —g(E—E.) and assum@(E) = o2 to be indepen-
Enin IS used as the final state will be discussed later. dent of E thene the FP equation describes the famous
In Fig. 2, FPTDF are plotted for the four problems dis- '

Ornstein-Uhlenbeck proce$8] and it can be solved analyti-
cussed above: TSP-24, PFP, XDA, and E2). The distri- procets] y

i ) ) .. cally. Starting fromE,, the FPTDF to reaclt, is of the
bution functions are normalized. All four curves can be f|ttedf0rm

quite well by the inverse Gaussian distribution functjas]

(IGDF), although it is less spectacular for the two combina- yd g \% gy?d?
torial optimization problems, TSP and PFR,15. f=2-"mn 142 A~ 20y ®)

Similar to the Gaussian distribution function, the IGDF is

also a solution of the one-dimensional diffusion equationwhere y=exp(—gt) and d=Ey—E,,. For very small and
with a constant drift velocity. However, the Gaussian distri-very larget this equation and the inverse Gaussian distribu-
bution function gives the probability density at timdéor a  tion function of Eq.(3) are very similar. However, we can
diffusive particle with a net drift velocity to be at a distance also solve the FP equation numerically without making the
d from the starting point. On the other hand, IGDF gives theapproximations tA(E) andB(E). The numerical result for
probability density of the first passage time of the particle tothe FPTDF is plotted in Fig.(4). The circles are the result of
arrive at distancel and it takes the form Monte Carlo simulation for the original TSP-24 problems.
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FIG. 3. FunctionA(E) andB(E) of Eq. (4) as a function of (a) and(b) for TSP-24 afl = 25; and(c) and(d) for E;, at T=0.025 and
T=0.031.

In Figs. 3c), and 3d), the drift velocity A(E) is fairly can hop in the energy range plotted in Fig&)3and 3b).
small and with little variation until it reaches abdat=1.5. Notice that the TSP result shown in Fig@# does not
The temperature dependence indicates that there are two bagree so well with the FP result as f&s,. Indeed, the
riers aroundE=0.8 andE=1.5 at T=0.025. Similar sce- numerical data for this figure are the case where we have
nario also appears at=0.031. FPTDF obtained by integrat- truncated the steps where they involve long jumps, i.e., large
ing FP equation numerically is plotted as the solid line inAE. The data for this figure involvd E always less than
Fig. 4(b). It agrees very well with the original simulation 100. We have tried several other truncations and the fit gets
result shown as the circles. The fact that there are barriensorse as the allowed E gets larger. We believe that this is
and local wells in these optimization problems is expectedmainly due to the discrete nature of the MC operation in
Take, for example, the multivariable functipiqg. (2)] that  TSP. In the TSP MC process, there is a possibility for very
we are studying. Let us take the number of varialle be  large change in energy due to a single exchange of two cities.
1 instead of 20. It is a quadratic function plus a cosine funcHence the transition probabiliyWg(AE) has very long tails
tion. With the cosine function alone, it is easy to see thatwith small weight, which is similar to the famous Levy flight
there are local wells whexis equal tom, 37, etc. One can [8]. The second momer&(E) used in the FP approach can-
thus expect that the functidg;, has local wells and barriers not fully account for this behavior. It is worth mentioning
as the energy decreases in this case. As one increases tiere that as one truncates the latlyg, one makes these
number of variables, there should be more local wells andliscrete models closer to the continuous models, as sup-
barriers but the phase space that one can wander around alsorted by our study of the sets of data with various trunca-
increases. It is therefore conceivable that most of the barriersons. Since combinatorial optimization problems usually in-
and wells at higher energies would have fewer effects bevolve large change of energy, the FP approach is therefore
cause there are more paths for one to go down the hill. As theot appropriate.
energy gets lower, effects of large local barriers and wells Since we know the transition probabilit}/g(AE) at all
will begin to contribute. This is indicated in Figs(c3 and  the energy, it is then not necessary to use the FP equation
3(d). In the case of the TSP, the smoothness of the functionghich only uses the first and second moments of the transi-
A(E) andB(E) suggests that the local barriers and wells aretion probability. We could calculate FPTDF by just doing a
still relatively small as compared to the energy scale that onene-dimensional MC simulation. In Fig. 5, FPTDF obtained
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(b) FP equation
g o Simulation
E ooots | different paths will have very different time scales involved.
E The system behaves nonergodic in the time scale of the
g simulation. The statistical information stored\Wc(AE) is
& ooot0 thus not so useful. The functio®s(E) andB(E) for XDA
) are very similar in nature to those of E@®) as shown in
;D Figs. 3¢) and 3d), where one can see large barriers as the
g | system goes to lower energy while those of the PFP are
£ 0.0005 | 7= . A
Z similar to the ones corresponding to the TSP in Figy and
= 3(b). The nonergodic nature can also be reflected in the plots
______________ . of FPTDF for the cases studied here where the curves corre-
0.0000 1000 2000 s000  sponding to those in Fig. 2 cannot be fitted by IGDF any-
t more, though they are not shown here. They all have long

FIG. 4. FPTDF obtained by solving HEq. (4)] with the input time tail_s, which |s related to the fact that the sy_stem is
of Fig. 3. In (a) the original MC result for TSP-24 is shown by trapped in local minima as the system searches for its global

circles and solid lines are FP resul(b) is for E;, at T=0.031. minimum.
Figure 3b) shows that the effective diffusion coefficient

B(E) becomes very small at low energy. Vanishing drift
velocity and small diffusion coefficient imply that the system

one-dimensional MC simulation is compared with the origi—iS confined to move in a _relat_ive_zly ana” r?9i°”_- Unless the
nal FPTDF obtained for TSP-24. Excellent agreement suppath tc_) global minimum s within th's_ region, _'t would _be
ports the idea of using energy as the only stochastic variablvery difficult for the system to locate it and this essentially
Another consequence of the success of the simple on&€COmes a trapped state. .
dimensional model is the realization thatTat T, the in- We notice that Figs. (& and 3b) demonstrate a typical
formation about the particular path is unimportant and thunnel energy surfac¢16]. The drift velocity A(E) de-
statistical information about all the paths represented bgreases as energy is lowered and similarly the diffusion co-
We(AE) is enough. This is usually referred to as the ergodicefficientB(E) or the size of the neighborhood also shrinks.
property in statistical physics. It is surprising to see that the In summary, we have shown that four different optimiza-
ergodic assumption actually works. tion problems have many common features in the way they
SinceEq is the most likely state that the system will stay approach their equilibrium states. The average first passage
at the corresponding temperature, the system is more likelime to reach the global minimum at a fixed temperature
to go up to the equilibrium state than to go down to lowerMonte Carlo process has a minimum at a certain temperature
energy states when it is at energy<E.,. Hence atE  T,,. At T>T,,, FPTDF are approximated well by the IGDF
<Egq the drift velocity or A(E) is positive. This is very defined by Eq(3). This suggests that we could use the cost
different from the case witkE>E.,. Thus at finite tempera- function or the energy as the stochastic variable in describing
tures the FPTDF to reach the global minimig;, does not these complicated MC processes. With the energy as the
have the form of IGDF and it has more paths with longeronly stochastic variable, we further show that FPTDF could
first passage time. be derived more systematically by solving the FP equation.
At temperatures below,,, Eqis very low. Before the This approach works well for the optimization problems in-
system reacheB.,, its drift velocity either vanishes or be- volving continuous variables. On the other hand, for combi-
comes positive as shown in Fig(c We do not expect the natorial optimization problems, we need to use all the infor-
approach to remain valid here. At very low temperaturesmation contained in the transition probabiliyWg(AE).

by using the transition probabilitWz(AE) (solid line) in a
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Nevertheless, the original multivariable MC processes in eiquickly locate this temperature. The failure of treating the

ther case are mapped into a one-dimensional diffusion prolmultivariable MC processes as a one-dimensional diffusion

lem. problem near or below ,, might be useful information for
This result also indicates that at temperatures abigye  this purpose.

the MC processes are dominated by entropy and the system ) )
is more or less ergodic. BeloW,,, there are traps and bar- This work was partially supported by a grant from Aca-

fiers that not only slow down the search for the global mini-deémia Sinica, Republic of China. Parts of the computations
mum but also make the system behave in a nonergodic wa¥ere performed at the National Center for High-Performance
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